securiTumm

Security report

SUBJECT

Client_Name web application

DATE

31.07.2024 - 08.08.2024

RETEST DATE

29.01.2025

LOCATION

Cracow

AUTHOR

Bartosz Dyczkowski

VERSION

1.1

securiTum

Executive summary

This documentis a summary of work conducted by the Securitum. The subject of the test was the Client_Name
web application.

Tests were conducted using the following roles:

e Dyrektor regionalny / Regional Director
e Super Admin
e Uzytkownik nieuwierzytelniony / Unauthenticated User

The most significant vulnerability identified is:

e [HIGH] SECURITUM-XXXXXX-001: Authorization flaws - possibility of accessing unauthorized
functionalities.

During the tests, particular emphasis was placed on vulnerabilities that might in a negative way affect
confidentiality, integrity or availability of processed data.

The security tests were carried out according to generally accepted methodologies, including: OWASP TOP10,
(in a selected range) OWASP ASVS as well as internal good practices of conducting security tests developed by
the Securitum.

An approach based on manual tests (using the above-mentioned methodologies), supported by several
automatic tools (i.a. Burp Suite Professional, Nessus, sglmap), was used during the assessment.

The vulnerabilities are described in detail in further parts of the report.

securitum

Status after retests 29.01.2025

On January 29, 2025, retests were conducted for all previously identified vulnerabilities and informational
points.

As a result of this work, a “Retest status” section was added to each verified vulnerability or recommendation,
containing detailed information about the retesting process.

Atotal of 7 vulnerabilities and 5 informational points were retested.
The retesting was carried out in the staging environment available at: https://[DOMAIN]

Below is a table presenting the vulnerability name, its classification, and status.

Vulnerability ID Vulnerability or recommendation title Status after retests

Authorization flaws - possibility of accessing

SHESRIBL R EOet DIl unauthorized functionalities

Lack of protection against brute force attack

SECURITUM-XXXXXX-002 !
on login form

Support for HTTP (unencrypted)

SECURITUM-XXXXXX-003 ..
communication

Open Redirect - possibility to redirect a user

SECURITUM-XXXXXX-004 .)
to a malicious domain

Lack of validation for files within archives

SECURITUM-XXXXXX-005 uploaded to the server

Path traversal - possibility to upload a file

SECURITUM-XXXXXX-006
outside the designated directory

SECURITUM-XXXXXX-007 Authentication via HTTP Basic Authentication

SECURITUM-XXXXXX-008 Lack of Content-Security-Policy header

SECURITUM-XXXXXX-009 Lack of Referrer-Policy header

Lack of Strict-Transport-Security (HSTS)

SECURITUM-XXXXXX-010
header

SECURITUM-XXXXXX-011 Lack of X-Content-Type-Options header

SECURITUM-XXXXXX-012 No invalidation of the session after logout

securitum

Risk classification

Vulnerabilities are classified on a five-point scale, that reflects both the probability of exploitation of the
vulnerability and the business risk of its exploitation. Below, there is a short description of the meaning of each

of the severity levels:

CRITICAL - exploitation of the vulnerability makes it possible to compromise the server or network
device, or makes it possible to access (in read and/or write mode) data with a high degree of
confidentiality and significance. The exploitation is usually straightforward, i.e. an attacker does
not need to gain access to the systems that are difficult to reach and does not need to perform
social engineering. Vulnerabilities marked as ‘CRITICAL” must be fixed without delay, mainly if they
occur in the production environment.

HIGH - exploitation of the vulnerability makes it possible to access sensitive data (similar to the
‘CRITICAL’ level), however the prerequisites for the attack (e.g. possession of a user account in an
internal system) make it slightly less likely. Alternatively, the vulnerability is easy to exploit, but the
effects are somehow limited.

MEDIUM - exploitation of the vulnerability might depend on external factors (e.g. convincing the
user to click on a hyperlink) or other conditions that are difficult to achieve. Furthermore,
exploitation of the vulnerability usually allows access only to a limited set of data or to data of
a lesser degree of significance.

LOW - exploitation of the vulnerability results in minor direct impact on the security of the test
subject or depends on conditions that are very difficult to achieve in practical manner (e.g.
physical access to the server).

INFO - issues marked as ‘INFO’ are not security vulnerabilities per se. They aim to point out good
practices, the implementation of which will lead to the overall increase of the system security level.
Alternatively, the issues point out some solutions in the system (e.g. from an architectural
perspective) that might limit the negative effects of other vulnerabilities.

Statistical overview

Below, a statistical summary of vulnerabilities is shown:

CRITICAL

HIGH

MEDIUM

LOW

o
=
N
w
D
(€]
[e)]

Additionally, 5 INFO issues are reported.

securitum

Statistical overview following the retest - 29 January 2025
All vulnerabilities were fixed.

Additionally, 5 informational issues remain present.

securitum

Contents

Y= o0 [4 18728 4=] o Lo o S 1
EXECULIVE SUIMIMALIY ..ccuiiemirieesesneessrnesissnasssnmssssnsssssmsssanassssnsssssnsssmsmssssnnsssnmssssnassssnssssnsssnensssnnnns 2
Status after retests 29.01.2025cccccerrminiimmmrminnnerr s ———————— 3
R ES] (o = LT 1= o o o 4
R = L= 1 o= I Y= T 4
Statistical overview following the retest - 29 January 2025cccoiiireiiiirmmeesiesreresssssereee s serennes 5
CRANEE NISTONY ..cceeueeiiieeeeisineesissssmsssesssnassssssrassssrsrnnsssssrsnasssssannssssrsnnnsssssssnasssssnsnsssnsnsnsssssnsnnnns 7
Vulnerabilities in the Web appliCationcccuieeceieesirimesirimesirnmsssrnssrsrmssrsrassrsnasssnssssensssnsnsssnes 8

[FIXED] [HIGH] SECURITUM-XXXXXX-001.: Authorization flaws - possibility of accessing unauthorized

L0003 0 T = =P 9
Example 1: Deleting a user from the ,Web panel” ... 9
Example 2: Modifying an existing NOtIICAtION ... 10

[FIXED] [MEDIUM] SECURITUM-XXXXXX-002: Lack of protection against brute force attack on login

) 1 20 P 13

[FIXED] [LOW] SECURITUM-XXXXXX-003: Support for HTTP (unencrypted) communication........... 15

[FIXED] [LOW] SECURITUM-XXXXXX-004: Open Redirect - possibility to redirect a user to a malicious
o [0 010 2= 11 o T PPt 17

[FIXED] [LOW] SECURITUM-XXXXXX-005: Lack of validation for files within archives uploaded to the
STV cettuueuuirreeransssserennnnssssrsrnnsssssersnsasssssessnnssssssssnnnsssssesnnnnsssssessnnnsssssssnnnsssssensnnnsssssesnnnnssssssnnnnssnssnnnnn 19

[FIXED] [LOW] SECURITUM-XXXXXX-006: Path traversal - possibility to upload a file outside the

o L=X3 =0 g F= T =T 0 11 (=T o T Y/ PP 21
[FIXED] [LOW] SECURITUM-XXXXXX-007: Authentication via HTTP Basic Authentication 25
L0 10 E= L L0 A= T 3= L= 7S 27

[NOT IMPLEMENTED] [INFO] SECURITUM-XXXXXX-008: Lack of Content-Security-Policy header.. 28
[NOT IMPLEMENTED] [INFO] SECURITUM-XXXXXX-009: Lack of Referrer-Policy header 29

[NOT IMPLEMENTED] [INFO] SECURITUM-XXXXXX-010: Lack of Strict-Transport-Security (HSTS)
== Lo (= 30

[NOT IMPLEMENTED] [INFO] SECURITUM-XXXXXX-011: Lack of X-Content-Type-Options header .31
[NOT IMPLEMENTED] [INFO] SECURITUM-XXXXXX-012: No invalidation of the session after logout

Change history

Document date Version Change description

30.01.2025 1.1 Creation of retest report. A re-verification of all previously reported
findings was conducted.

08.08.2024 1.0 Creation of the security testing report.

Vulnerabilities in the web application

securitum

[FIXED] [HIGH] SECURITUM-XXXXXX-001: Authorization flaws - possibility

of accessing unauthorized functionalities

RETEST STATUS 29.01.2025

The vulnerability has been fixed.

SUMMARY

The tested application does not implement a proper authorization layer for certain APl endpoints. As a result,
an application user can perform actions that are not available or visible through the graphical user interface.

For example, exploiting this vulnerability allows:

e Deletion of a user from the ,Web Panel”
e Modification of an existing notification

More information:

e https://owasp.org/www-community/Broken Access Control
e https://cwe.mitre.org/data/definitions/284.html

e https://cheatsheetseries.owasp.org/cheatsheets/Authorization Cheat Sheet.html

PREREQUISITES FOR THE ATTACK

An account in the application with ,Super Admin” permissions.

TECHNICAL DETAILS (PROOF OF CONCEPT)

III

Example 1: Deleting a user from the ,Web pane

Auser with "Super Admin" privileges is only allowed to view user details in the ,Web panel” section.

TQ KR Dyrektor regionalny Q Axtywny
@ Szczegdly

GD Dyrektor regionalny o Aktywny

[\

Deleting a user from the ,Web panel” requires the following steps:

1. Authenticate in the application using an account with ,Super Admin” privileges.
2. Goto the details of the selected account to obtain the necessary ID:

securitum

https://owasp.org/www-community/Broken_Access_Control
https://cwe.mitre.org/data/definitions/284.html
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

O~ https _t sers/07bf75b01-9bed details/web

& Uzytkownicy

Dyrektor regionalny Q AKtywny

&l

3. Send the following HTTP request to the application:

DELETE /web-panel/users/mobile/@7bf75b1-9be4-[..] HTTP/2
Host: [HOSTNAME]
Authorization: Bearer [..REDACTED..]

Server response confirming the deletion of the user:

HTTP/2 204 No Content

Date: Wed, 07 Aug 2024 10:27:54 GMT
Server: Kestrel
Access-Control-Allow-Origin: *

4. Vulnerability confirmation:

& _ - “ P —

Example 2: Modifying an existing notification

A user with ,Super Admin” privileges is only allowed to delete notifications and create new ones:

Powiadomienia

Y Nazwa Y Tresé Y Grupa odbiorcéw Y Region

Nazwa Typ Region Tresc Grupa odbiorcow

- et N- ey

Modifying an existing notification requires the following steps:

1. Authenticate in the application using an account with ,Super Admin” privileges.
2. Navigate to the ,Powiadomienia (Notifications)” section - the application sends a request to retrieve
notification information, and the response allows extraction of the notification ID:

securitum

GET /web-panel/notifications?PageNumber=1&PageSize=10 HTTP/2
Host: [HOSTNAME]
Authorization: Bearer [..]

Server response:

HTTP/2 200 OK

Content-Type: application/json; charset=utf-8
[..]

Server: Kestrel

Access-Control-Allow-Origin: *

{
"items" : [
{
"id" : "94f12ce5-0109-[..1",
"name" : "Test <s>aa",
"message" : "Test<s> {{7*7}}",
"type" : "Push",
"receivers" : "All",
"districts" : [],
"createdAt" : "2024-08-01T12:01:40.087711Z"
}
1,
"empty" : false,
"currentPage" : 1,
"resultsPerPage" : 10,
"totalPages" : 1,
"totalResults" : 1
}

3. Send the following HTTP request to the application:

PUT /web-panel/notifications/94f12ce5-0109-[..] HTTP/2
Host: [HOSTNAME]

Authorization: Bearer [..]

Content-Type: application/json

Content-Length: 141

"id" : "94f12ce5-0109-[..]1",
"name" : "Zmodyfikowane",
"message" : "po czasie",
"type" : "Push",
"receivers" : "All",
"districtIDs" : null

}

Server response confirming the modification of the notification:

HTTP/2 204 No Content

Date: Wed, 07 Aug 2024 11:07:43 GMT
Server: Kestrel
Access-Control-Allow-Origin: *

securitum

4. Vulnerability confirmation:

Nazwa Typ Region Tresc Grupa odbiorcow
Zmodyfikowane Push po czasie Wszyscy
LOCATION

Example 1: Deleting a user from the ,Web panel”:
o [HOSTNAME]/web-panel/users/mobile/{id} - DELETE HTTP method.
Example 2: Modifying an existing notification:

e [HOSTNAME]/web-panel/notifications/{id} - PUT HTTP method.

RECOMMENDATION

It is recommended to improve the mechanism responsible for verifying permissions for the use of specific
methods in requests sent to APl endpoints. A user should only be able to perform actions explicitly available
in the application's GUI.

More information:

e https://cheatsheetseries.owasp.org/cheatsheets/Authorization Testing Automation.html

e https://cheatsheetseries.owasp.org/cheatsheets/Authentication Cheat Sheet.html

e https://cheatsheetseries.owasp.org/cheatsheets/Insecure Direct Object Reference Prevention Ch
eat Sheet.html

securitum

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Testing_Automation.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html

RETEST STATUS 29.01.2025

The vulnerability has been fixed. A user account is blocked after several failed login attempts. However, it
should be noted that a potential attacker can intentionally block user accounts if the login names are known.

SUMMARY

The analysis showed that the application in no way limits the number of failed login attempts. An attacker
sending the application form to the application multiple times is able to perform a brute force. This opens a
possibility for the attacker to ,guess” the password of the application user’s account and in effect gain access
toit.

More information:

e https://owasp.org/www-community/attacks/Brute force attack

PREREQUISITES FOR THE ATTACK

None.

TECHNICAL DETAILS (PROOF OF CONCEPT)

In order to perform a brute force attack, the following steps have to be taken:

Navigate to the application's login form at [HOSTNAME]/login.

Enter the username, e.g., ,audytor11+Client_Name01”.

The attacker initiates enumeration by entering a potential user password.
Enumeration continues as the attacker submits additional password combinations.

N =

The process may be fully automated. It is enough that the attacker uses the Burp Suite application (Intruder
module) or writes a script that will send the appropriate request.

During the tests, there were 2037 failed attempts made to log into the test account with an incorrect password
(highlighted in yellow):

POST /api/auth/callback/credentials HTTP/2

Host: [HOSTNAME]

Cookie: NEXT_LOCALE=pl; _ Host-next-auth.csrf-token=[..]; _ Secure-next-auth.callback-
url=https%3A%2F%2F [HOSTNAME]%2Fa[..]s

Content-Type: application/x-www-form-urlencoded

Content-Length: 207

Connection: keep-alive

redirect=false&username=audytorl1%2BClient_Name@l&password=TestTest&csrfToken=[..]&callbackUrl=htt
ps%3A%2F%2F [HOSTNAME]%2Flogin&json=true

The next, 2038 request sent confirms that the account has not been blocked and presents the ending of
enumeration with success (correct finding of the password):

48 (12) 35

securitum@secur

vww.securitum.pl

SeKurak.p

securitum

https://owasp.org/www-community/attacks/Brute_force_attack

Request Payload Status code Response received Length

[2038 I 200 663 1944 |

0 401 e 36U

1 captain 401 523 360
2 cardinal 401 740 360
3 caren 401 507 360

an4 4 ara

equest Response

retty Raw Hex

HTTP/2 200 OK

Vary: RSC, Next-Router-State-Tree, Next-Router-Prefetch, Next-Url
Content-Type: application/json

Date: Wed, 07 Aug 2024 10:07:08 GMT

Set-Cookie: __Secure—next—auth.callback—ur1=httpsﬁs3A%2F%_Flogin; Path=/; HttpOnly; Secure; Same{

Set-Cookie: __Secure-next-auth.session-token=

R5i8A-rmvrag3d

g; Path=/; Exf

Apart from enumeration and an attempt to guess the password, one should also remember about the so-
called “inverted brute force”. In this version of the attack, the password always remains the same, but
usernames are enumerated.

LOCATION

Login mechanism:

o [HOSTNAME]/api/auth/callback/credentials

RECOMMENDATION

It is recommended that the application blocks mass login attempts either to a single account using multiple
passwords or to multiple accounts using the same password. This can be achieved, for example, by
implementing CAPTCHA mechanisms or SMS/email tokens when an attack attempt is detected.

More information:

e https://owasp.org/www-community/controls/Blocking Brute Force Attacks

https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

[FIXED] [LOW] SECURITUM-XXXXXX-003: Support for HTTP (unencrypted)
communication

RETEST STATUS 29.01.2025

The vulnerability has been fixed. The ability to communicate using an unencrypted protocol has been blocked.

SUMMARY

Application testing revealed that the application does not enforce the use of the encrypted HTTPS protocol.

This creates a risk of sensitive user data being intercepted or modified if an attacker eavesdrops on network
traffic (,Man in the Middle”, MiTM).

More information:

e https://sekurak.pl/kilka-slow-o-wdrozeniu-ssl-i-tls-cz-i/

e https://sekurak.pl/kilka-slow-o-wdrozeniu-ssl-i-tls-cz-ii/

e https://cheatsheetseries.owasp.org/cheatsheets/Transport Layer Security Cheat Sheet.html
e https://cwe.mitre.org/data/definitions/757.html

e https://cwe.mitre.org/data/definitions/326.html

PREREQUISITES FOR THE ATTACK

Conducting a Man-in-the-Middle (MiTM) attack.

TECHNICAL DETAILS (PROOF OF CONCEPT)

The server hosting the tested application allows the use of the unencrypted HTTP protocol and does not
enforce the use of the encrypted HTTPS protocol:

test]

& Polgczenie nie jest zabezpieczone, Wprowadzone dane lkagowania mogy zostad
przechwycone. Wiecej informacji

Zarzgdzaj hastami

Zaloguj sig

LOCATION

Server configuration:

e http://[HOSTNAME]

securitum

https://sekurak.pl/kilka-slow-o-wdrozeniu-ssl-i-tls-cz-i/
https://sekurak.pl/kilka-slow-o-wdrozeniu-ssl-i-tls-cz-ii/
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Security_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/757.html
https://cwe.mitre.org/data/definitions/326.html

RECOMMENDATION

It is recommended to enforce the use of a secure, encrypted HTTPS communication channel. In addition,
when trying to connect via HTTP, automatic redirection to HTTPS should be made.

The current recommended algorithm configuration can be found at:

e https://ssl-config.mozilla.org/

More information:

e https://cheatsheetseries.owasp.org/cheatsheets/Transport Layer Security Cheat Sheet.html

securitum

https://ssl-config.mozilla.org/
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Security_Cheat_Sheet.html

[FIXED] [LOW] SECURITUM-XXXXXX-004: Open Redirect — possibility to
redirect a user to a malicious domain

RETEST STATUS 29.01.2025

The vulnerability has been fixed.

SUMMARY

The analysis showed that the application does not correctly validate the URL to which a user is being
redirected. Using this fact, an attacker, may send the user to a malicious page.

More information:

e https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated Redirects and Forwards Cheat She

et.html

PREREQUISITES FOR THE ATTACK

Logging in by link prepared by attackers.

TECHNICAL DETAILS (PROOF OF CONCEPT)

The application allows setting a redirect address after a successful login. An attacker can craft a link that, upon
login, redirects the victim to a malicious site specified in the callbackURL parameter.

Example links sent to the victim:

e [HOSTNAME]/login?callbackUrl=%2F%2F5fltdivac|...]6fc60xom.attacker.domain
e [HOSTNAME]/login?callbackUrl=https://8z8wxIf[...]Jw9ka8z.attacker.domain

Sending an HTTP login request:

POST /api/auth/callback/credentials HTTP/2
Host: [HOSTNAME]

Cookie: _ Host-next-auth.csrf-token=[..]
Content-Type: application/x-www-form-urlencoded
Content-Length: 281

redirect=false&username=audytorl1%2BClient_Name@l&password=[..]&csrfToken=[..]&callbackUrl=https%3A
%2F%2F [HOSTNAME]%2Flogin%3FcallbackUrl%3D%252F%252F5f1tdiv9c[..]o6fc60xom.attacker.domain&json=tru
e

Server response:

HTTP/2 200 OK

Vary: RSC, Next-Router-State-Tree, Next-Router-Prefetch, Next-Url
Content-Type: application/json

[..]

{ "url":"[HOSTNAME]/login?callbackUrl=%2F%2F5f[..]rfzo6fc60xom.attacker.domain"
}

https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html

Request history after successful login:

LOCATION

Login mechanism - callbackUrl parameter:

e [HOSTNAME]/login?callbackUrl={ADRES_URL}

RECOMMENDATION

It is recommended to validate the destination address used for redirection, for example by implementing a
whitelist of allowed URLs to which users can be redirected.

More information:

e https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated Redirects an
d Forwards Cheat Sheet.md

securitum

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.md

[FIXED] [LOW] SECURITUM-XXXXXX-005: Lack of validation for files
within archives uploaded to the server

RETEST STATUS 29.01.2025

The vulnerability has been fixed. Uploading zip archives is not possible.

SUMMARY

During testing, it was observed that the application does not validate the contents of uploaded archives. An
attacker can exploit this to upload arbitrary files to the server, including executable files or even phishing

pages.
In addition, no antivirus software was detected that would scan uploaded files for malicious code.

Important! This vulnerability is global, i.e. it affects all functionalities that allow uploading archive files to the

server.
More information:

e https://owasp.org/www-community/vulnerabilities/Unrestricted File Upload
e https://www.eicar.org/download-anti-malware-testfile

PREREQUISITES FOR THE ATTACK

Having an account in the application.

TECHNICAL DETAILS (PROOF OF CONCEPT)

Below is an example request containing a test file (eicar.exe) compressed in a .zip archive, which is commonly
recognized by antivirus software as potentially dangerous:

POST /web-panel/files?fileType=Archive HTTP/2

Host: [HOSTNAME]

Authorization: Bearer [..]

Content-Type: multipart/form-data; boundary=------------------~-~—~—~—~——-—-
67215092041642344602466984417

Content-Length: 461

----------------------------- 67215092041642344602466984417
Content-Disposition: form-data; name="file"; filename="virus.zip"
Content-Type: application/zip

[EICAR_FILE_CONTENT.EXE_IN_ZIP_FORMAT]
----------------------------- 67215092041642344602466984417 - -

In response, the server returns a confirmation of the file upload:

HTTP/2 200 OK
Content-Type: application/json; charset=utf-8

[..]
Server: Kestrel
Access-Control-Allow-Origin: *

"d3e56cle-e551-[..]"

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://www.eicar.org/download-anti-malware-testfile/

The following request allows downloading of the aforementioned file:

GET /abe9ad52-ebfa-[..]/archive/d3056cle-[..]-12b6d662723c_virus.zip?sv=2023-11-03&se=2024-08-
07T15%3A05%3A47Z&sr=b&sp=r&sig=YYV[..]q04%3D HTTP/1.1
Host: [..]

In response, the server returns the uploaded file with unchanged content and extension:

HTTP/1.1 200 OK
Content-Length: 237
Content-Type: application/zip
[..]

[EICAR_FILE_CONTENT.EXE_IN_ZIP_FORMAT]

Contents of the downloaded archive:

[..] Downloads % unzip -1 d3@56cle-[..]-12b6d662723c_virus.zip
Archive: d3@56cle-[..]-12b6d662723c_virus.zip
Length Date Time Name

69 ©01-18-2024 14:21 eicar.exe

LOCATION

File upload mechanism:

e [HOSTNAME]/web-panel/files?fileType=Archive

RECOMMENDATION

Every file, including those within an archive, should be validated and scanned for malicious content across all
functionalities that involve uploading files to the server.

More information:

e https://cheatsheetseries.owasp.org/cheatsheets/File Upload Cheat Sheet.html

securitum

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

[FIXED] [LOW] SECURITUM-XXXXXX-006: Path traversal - possibility to
upload a file outside the designated directory

RETEST STATUS 29.01.2025

The vulnerability has been fixed. File names containing the parent-directory escape sequence are blocked.

SUMMARY

During testing it was observed that the application allows uploading files to directories outside the defined
structure (the path configured in the application). An attacker can exploit this to upload a file to any directory
in the container.

More information:

e https://owasp.org/www-community/attacks/Path Traversal

e https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web Application Security Testing/05-Authorization Testing/01-
Testing Directory Traversal File Include

PREREQUISITES FOR THE ATTACK

Having an account with with Super Admin privileges in the application.

TECHNICAL DETAILS (PROOF OF CONCEPT)

To upload a file to any location inside the Microsoft Azure Blob container, use a file-upload function available
when, for example, creating a new reward, material, or news item, accessible to an account with Super Admin
privileges:

N

Brak zdjecia

B!
liknij aby warac lub przeciagnij i upusc

PNG, JPG (max. 3MB)

https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include

When the file is added, the application sends the following request:

POST /web-panel/files?fileType=Image HTTP/2

Host: [HOSTNAME]

Authorization: Bearer [..]

Content-Type: multipart/form-data; boundary=-----------------~—~--~-~—~-----
240813758136739653422361685593

Content-Length: 443

----------------------------- 240813758136739653422361685593
Content-Disposition: form-data; name="file"; filename="test.png"

Content-Type: image/png

EIPNG

In response, the server returns the ID of the uploaded file:

HTTP/2 200 OK
Content-Type: application/json; charset=utf-8

[..]
Server: Kestrel
Access-Control-Allow-Origin: *

"77a5b3fe-f4a7-[..]1"

To see the exact location of the uploaded file, send the following request:

GET /web-panel/files/77a[..]e-f4a7-[..] HTTP/2
Host: [HOSTNAME]
Authorization: Bearer [..]

Server response:

HTTP/2 200 OK

Content-Type: application/json; charset=utf-8
[..]

Server: Kestrel

Access-Control-Allow-Origin: *

{

"id" : "77[..]fe-f4a7-[..]",

"fileUrl" g "https://[...]/abe9ad52-ebfa-[...]/image/7[..]1b3fe-f4a7-[..]_test.png?sv=[..]-11-
03&se=[..]-08-0[..]4%3A33%3A00Z&sr=b&sp=r&sig=x7upzZ51K[..]1B8%2FM6qZ1[...]",

"fileType" : "Image",

"fileName" : "[..].png",

"contentType" : "image/png"
}

The uploaded ,Image” file with the . png extension should, according to the application’s design, be located in
the /{ container}/image/ directory.

By using the ../ sequence it is possible to place the uploaded file in any directory within the container; for
example, using the file name /../../path-traversalSecuritum/aaaa will create the file aaaa.png in the {
container}/path-traversalSecuritum/ directory.

securitum

Request sent:

POST /web-panel/files?fileType=Image HTTP/2

Host: [HOSTNAME]

Authorization: Bearer [..]

Content-Type: multipart/form-data; boundary=-----------------~-~--~-~—~-----
240813758136739653422361685593

Content-Length: 472

----------------------------- 240813758136739653422361685593
Content-Disposition: form-data; name="file"; filename="/../../path-traversalSecuritum/aaaa.png"

Content-Type: image/png

%PNG

Server response with the ID of the uploaded file:

HTTP/2 200 OK
Content-Type: application/json; charset=utf-8

[..]
Server: Kestrel
Access-Control-Allow-Origin: *

"0c93f739-0bf5-[..]

Preview of the exact location:

GET /web-panel/files/@c93f739-0bf5-[..] HTTP/2
Host: [HOSTNAME]
Authorization: Bearer [..]

Server response:

HTTP/2 200 OK
Content-Type: application/json; charset=utf-8
[..]

Server: Kestrel

"id" : "@c93f739-0bf5- [1,

"fileUrl" "https://[...].[DOMAIN] /abe9ad52-ebfa-[...]/path-
traversalSecuritum/aaaa. png?sv 2023-11-03&se=2024-08-07T14%3A50%3A18Z&sr=b&sp=r&sig=[...]Ki8%3D",

"fileType" : "Image",

"fileName" : "/../../path-traversalSecuritum/aaaa.png",
"contentType" : "image/png"

}

LOCATION

File-upload functionality:

e [HOSTNAME]/web-panel/files?fileType=Image

securitum

RECOMMENDATION

It is recommended to validate all the data received from the user (rejection of values inconsistent with the
template/format of a given field - whitelist approach), and then encode it on the output in relation to the
context in which it is embedded (in all places of application, not only those specified in the description).

For this purpose, it should be verified whether the framework used by the application has built-in functions
that implement the described recommendation.

More information:

e https://owasp.org/www-community/attacks/Path Traversal
e https://cheatsheetseries.owasp.org/cheatsheets/Input Validation Cheat Sheet.html

securitum

https://owasp.org/www-community/attacks/Path_Traversal
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

[FIXED] [LOW] SECURITUM-XXXXXX-007: Authentication via HTTP Basic
Authentication

RETEST STATUS 29.01.2025

If the business requirements of the application assume public access to the Open APl documentation, the
vulnerability is considered remediated due to the intentional public availability of the resource: https://ca-
Client_Nameapp-[REDACTED]azurecontainerapps.io/swagger/index.html.

SUMMARY

The tested application, when attempting to access Swagger at the address: [HOSTNAME]/swagger, uses HTTP
Basic Authentication for authentication. This method introduces several security risks, including:

1)

Authentication credentials must be sent with every HTTP request. As a result, even when a secure
communication channel (e.g., HTTPS) is used, the attack surface significantly increases because the
same credentials appear in multiple requests.

Once credentials are submitted using HTTP Basic Authentication, all web browsers retain this
information until the browser window is closed. This means there is no straightforward way to "log
out" of the application.

With HTTP Basic Authentication, there is no easy way to prevent browsers from saving the password
locally. This poses a risk of credential theft by malware running on an infected machine.

If the web server hosting the application is not configured to use a centralized user management
system, there is a risk of creating a shared username/password pair for multiple users. This is an
unacceptable practice, as it makes it impossible to determine who accessed the system at a given
time.

By default, a web server using HTTP Basic Authentication is not protected against brute-force attacks.
Implementing such protection requires additional configuration (e.g., using tools like fail2ban), which
may still be ineffective if shared credentials are used. Locking accounts temporarily in response to
repeated login attempts may also result in a Denial of Service for other users.

The application lacks a password change feature. If a user's credentials are leaked, there is no quick
way to change them.

Itis possible to establish multiple simultaneous sessions using the same credentials. The system does
not provide information about active sessions or any way to terminate them in the event of suspicious
activity.

PREREQUISITES FOR THE ATTACK

Obtaining application access credentials by any means.

TECHNICAL DETAILS (PROOF OF CONCEPT)

When accessing the Swagger URL, a Basic Authentication login prompt is displayed:

Q huos:/l_swagger
o I

Ta witryna prosi o zalogowanie siq.

Nazwa uzytkownika

[

During the allocated testing period, it was not possible to bypass security controls or gain access to Swagger.

LOCATION

[HOSTNAME]/swagger — authentication process.

RECOMMENDATION

It is recommended to stop using the HTTP Basic Authentication mechanism. To better secure access to
Swagger, client certificates can be used. A detailed description of this method can be found at the link below:

e https://sekurak.pl/uwierzytelnianie-certyfikatem-klienckim-ssl-krotki-przewodnik/
e https://www.scriptjunkie.us/2013/11/adding-easy-ssl-client-authentication-to-any-webapp/

More information:

e https://cheatsheetseries.owasp.org/cheatsheets/Session Management Cheat Sheet.html

+48 (12) 352 3382 www.securitum.pl
securitum@securitum.pl www.sekurak.pl

securitum

26

https://sekurak.pl/uwierzytelnianie-certyfikatem-klienckim-ssl-krotki-przewodnik/
https://www.scriptjunkie.us/2013/11/adding-easy-ssl-client-authentication-to-any-webapp/
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

securitum

Informational issues

[NOT IMPLEMENTED] [INFO] SECURITUM-XXXXXX-008: Lack of Content-
Security-Policy header

RETEST STATUS 29.01.2025

The recommendation has not been implemented. The Content Security Policy (CSP) is still missing from server
responses.

SUMMARY

The Content-Security-Policy (CSP) header was not identified in the application responses.

Content Security Policy is a security mechanism operating at the browser level that aims to protect it against
the effects of vulnerabilities acting on the browser side (e.g. Cross-Site Scripting). CSP may significantly impede
the exploitation of vulnerabilities, however its implementation may be complicated and may require
significant changes in the application structure.

The main idea of CSP is to define a list of allowed sources from which external resources can be loaded on the
page. For example, if you define the following CSP policy:

Content-Security-Policy: default-src 'self'

all external resources on the webpage may be loaded only from the application’s domain (*self'), and due to
that, any attempt to load script or image from external domain will fail. In this implementation, it is also
impossible to define the script code directly in the HTML code, e.g.:

<script>jQuery.ajax(...)</script> ‘

All scripts must be defined in external files, e.g.:

<script src="/app.js"></script>

More information:

e https://sekurak.pl/wszystko-o-csp-2-0-content-security-policy-jako-uniwersalny-straznik-

bezpieczenstwa-aplikacji-webowej/
e https://cheatsheetseries.owasp.org/cheatsheets/Content Security Policy Cheat Sheet.html

LOCATION

[HOSTNAME]/

RECOMMENDATION

It is recommended to consider implementation of the Content-Security-Policy header. To do this, define all
domains from which the resources in the application are downloaded (images, scripts, video/audio elements,
CSS styles etc.) and build CSP policy based on them.

If a large number of scripts defined directly in the HTML code (<script> tags or events such as onclick) is used,
they should be placed in external JavaScript files or nonce policies should be used. More information is
included in the links below:

e https://csp-evaluator.withgoogle.com

e https://report-uri.com/home/generate

securitum

https://sekurak.pl/wszystko-o-csp-2-0-content-security-policy-jako-uniwersalny-straznik-bezpieczenstwa-aplikacji-webowej/
https://sekurak.pl/wszystko-o-csp-2-0-content-security-policy-jako-uniwersalny-straznik-bezpieczenstwa-aplikacji-webowej/
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://csp-evaluator.withgoogle.com/
https://report-uri.com/home/generate

RETEST STATUS 29.01.2025

The recommendation has not been implemented. The Referrer-Policy header is still missing from server
responses.

SUMMARY

It was identified that the tested application does not implement Referrer-Policy header.

This header allows to specify what information can be placed in the Referer request header. It is also possible
to disable sending any values in the Referer header which will prevent from leaking sensitive information to
other third-party servers.

More information:

e https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
e https://scotthelme.co.uk/a-new-security-header-referrer-policy/

LOCATION

[HOSTNAME]

RECOMMENDATION

Referrer-Policy header should be added in all server responses:

Referrer-Policy: [value]

where [value] should have one of the following values:

e no-referrer: Referer header will never be sent in the requests to server.

e origin: Referer header will be set to the origin from which the request was made.

e origin-when-cross-origin: Referer header will be set to the full URL in requests to the same origin but
only set to the origin when requests are cross-origin.

e same-origin: Referer header contains full URL for requests to the same origin, in other requests the
Referer header is not sent.

+48 (12) 3523382
securitum@securitum.pl

securitum.pl
w.sekurak.pl

securitum

29

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://scotthelme.co.uk/a-new-security-header-referrer-policy/

RETEST STATUS 29.01.2025

The recommendation has not been implemented. The Strict-Transport-Security header is still missing from
Server responses.

SUMMARY

The HTTP header: Strict-Transport-Security (HSTS) was not identified in the application responses.

The introduction of HSTS forces the browser to use an encrypted HTTPS connection in all references to the
application domain. Even manually entering the "HTTP" protocol name in the address bar will not send
unencrypted packets.

The implementation of this header is treated as a generally good practice for hardening web application
security.

More information:

e https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
e https://sekurak.pl/hsts-czyli-http-strict-transport-security/

LOCATION

[HOSTNAME]/

RECOMMENDATION

The server's HTTP responses should contain a header:

Strict-Transport-Security: max-age=31536000

Alternatively, it is possible to define the HSTS header for all subdomains:

Strict-Transport-Security: max-age=31536000; includeSubDomains ‘

In addition, it is possible to use the so-called preload list, which by default is saved in the sources of popular
web browsers. The result is that the user's browser, which connects to the application for the first time, will
immediately enforce the use of an encrypted, secure communication channel. The preload value is set as
follows:

Strict-Transport-Security: max-age=31536000; preload

More information:

e https://hstspreload.org/
e https://www.chromium.org/hsts
e https://cheatsheetseries.owasp.org/cheatsheets/HTTP Strict Transport Security Cheat Sheet.ht

ml

+48 (12) 3523382
securitum@securitum.pl

securiTum Sy 30

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://sekurak.pl/hsts-czyli-http-strict-transport-security/
https://hstspreload.org/
https://www.chromium.org/hsts
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html

RETEST STATUS 29.01.2025

The recommendation has not been implemented. The X-Content-Type-Options header is still missing from
Server responses.

SUMMARY

The X-Content-Type-Options header was not identified in the responses of the application.

This header protects from attacks based on the so-called MIME-sniffing, i.e. guessing the MIME type of response
by web browser based on the content of the received response, instead of a Content-Type header value. This
may lead to the browser being forced to load the resource as HTML, even if its type is e.g. application/json.
As a result, an XSS attack may be performed.

More information:

e https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

LOCATION

[HOSTNAME]/

RECOMMENDATION

The following header should be added in all server responses:

‘ X-Content-Type-Options: nosniff

+48 (12) 3523382
securitum@securitum.pl

v.securitum.pl
w.sekurak.pl

securitum

31

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

[NOT IMPLEMENTED] [INFO] SECURITUM-XXXXXX-012: No invalidation
of the session after logout

RETEST STATUS 29.01.2025

The recommendation has not been implemented. The logout operation does not invalidate the JWT token.

SUMMARY

During the audit, it was found that the session is not invalidated when the “Log out” button is pressed, the
token used for APl interaction is not invalidated. An attacker who successfully acquires the “access_token”
(“Bearer”) identifier will be able to use it to interact with the API.

More information:

e https://cheatsheetseries.owasp.org/cheatsheets/Session Management Cheat Sheet.html

e https://owasp.org/Topl0/A07 2021-Identification _and Authentication Failures

e https://cheatsheetseries.owasp.org/cheatsheets/Authentication Cheat Sheet.html

TECHNICAL DETAILS (PROOF OF CONCEPT)

In order to confirm the vulnerability, the following steps need to be performed:

A user logs into the application.

The user presses the “Log out” button.

An attacker in any way acquires the “access_token” (“Bearer”) token.
The attacker sends a request with the “inactive” token:

How N

GET /web-panel/companies/names HTTP/2
Host: [HOSTNAME]
Authorization: Bearer eyJhbGciOiJSUz[..REDACTED...]Ddj1S@X0SbXF

5. Inresponse, the application returns the data presented below and thus it is confirmed that the token
is still active:

HTTP/2 200 OK
Content-Type: application/json; charset=utf-8
[..]

Server: Kestrel
Access-Control-Allow-Origin: *

{"names" : [[..]] }

LOCATION

Session management.

RECOMMENDATION

It is recommended to invalidate user's session immediately after the “Log out” button is pressed.

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

